Computing the clique number of a-perfect graphs in polynomial time
نویسندگان
چکیده
A main result of combinatorial optimization is that clique and chromatic number of a perfect graph are computable in polynomial time (Grötschel, Lovász and Schrijver 1981). This result relies on polyhedral characterizations of perfect graphs involving the stable set polytope of the graph, a linear relaxation defined by clique constraints, and a semi-definite relaxation, the Theta-body of the graph. A natural question is whether the algorithmic results for perfect graphs can be extended to graph classes with similar polyhedral properties. We consider a superclass of perfect graphs, the a-perfect graphs, whose stable set polytope is given by constraints associated with generalized cliques. We show that for such graphs the clique number can be computed in polynomial time as well. The result strongly relies upon Fulkersons’s antiblocking theory for polyhedra and Lovász’s Theta function.
منابع مشابه
Intersection graphs associated with semigroup acts
The intersection graph $mathbb{Int}(A)$ of an $S$-act $A$ over a semigroup $S$ is an undirected simple graph whose vertices are non-trivial subacts of $A$, and two distinct vertices are adjacent if and only if they have a non-empty intersection. In this paper, we study some graph-theoretic properties of $mathbb{Int}(A)$ in connection to some algebraic properties of $A$. It is proved that the fi...
متن کاملTenacity and some other Parameters of Interval Graphs can be computed in polynomial time
In general, computation of graph vulnerability parameters is NP-complete. In past, some algorithms were introduced to prove that computation of toughness, scattering number, integrity and weighted integrity parameters of interval graphs are polynomial. In this paper, two different vulnerability parameters of graphs, tenacity and rupture degree are defined. In general, computing the tenacity o...
متن کاملApplications of Parallel Scheduling to Perfect Graphs
We combine a parallel algorithm for the two processor scheduling problem, which runs in polylog time on a polynomial number of processors, with an algorithm to find transitive orientations of graphs where they exist. Both algorithms together solve the maximum clique problem and the minimum coloring problem for comparability graphs, and the maximum matching problem for co-comparability graphs. T...
متن کاملClique and chromatic number of circular-perfect graphs
A main result of combinatorial optimization is that clique and chromatic number of a perfect graph are computable in polynomial time (Grötschel, Lovász and Schrijver 1981). Circular-perfect graphs form a well-studied superclass of perfect graphs. We extend the above result for perfect graphs by showing that clique and chromatic number of a circularperfect graph are computable in polynomial time...
متن کاملA comparison of two approaches for polynomial time algorithms computing basic graph parameters
In this paper we compare and illustrate the algorithmic use of graphs of bounded treewidth and graphs of bounded clique-width. For this purpose we give polynomial time algorithms for computing the four basic graph parameters independence number, clique number, chromatic number, and clique covering number on a given tree structure of graphs of bounded tree-width and graphs of bounded clique-widt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 38 شماره
صفحات -
تاریخ انتشار 2011